# Some more foundation mathematics — notions from set theory: Tutorial problems

It’s a strange way of starting a lecture that I adopt..sometimes…I first give my students quizzes or exams…Here is some foundation mathematics for my deserving students and also, if any of my reader is interested:

Basic Notions from Set Theory:

Reference: Introduction to Analysis, Maxwell Rosenlicht, Dover Publications,

Exercises:

Question 1:

Let $\Re$ be the set of real numbers and let the symbols $<, \leq$ have their conventional meanings:

a) Show that $\{ x \in \Re: 0 \leq x \leq 3\} \bigcap \{x \in \Re: -1

b) List the elements of $(\{2,3,4 \} \bigcup \{ x \in \Re: x^{2}-4x+3 = 0\}) \bigcap \{x \in \Re: -1 \leq x < 3 \}$

c) Show that $(\{ x \in \Re: -2 \leq x \leq 0\} \bigcup \{ x \in \Re: 2 < x <4\}) \bigcap \{ x \in \Re: 0 \leq x \leq 3\} = \{ x \in \Re: 2 < x \leq 3\} \bigcup \{ 0\}$

Question 2:

If A is a subset of the set S, prove that :

2a) $(A^{'})^{'}=A$

2b) $A \bigcup A = A \bigcap A = A \bigcup \phi = A$

2c) $A \bigcap \phi = \phi$

2d) $A \times \phi = \phi$

Question 3:

Let A, B, C be elements of a set S. Prove the following statements and illustrate them with diagrams:

(a) $A^{'} \bigcup B^{'} = (A\bigcap B)^{'}$… a De Morgan law. In words, it can be said that the union of two complements is the complement of the intersection of the two.

(b) $A \bigcap (B \bigcup C) = (A \bigcap B) \bigcup (A \bigcap C)$

(c) $A \bigcup (B \bigcap C) = (A \bigcup B) \bigcap (A \bigcup C)$.

Question 4:

If A, B, C are sets, then prove that :

i) $(A-B) \bigcap C = (A \bigcap C)-B$

ii) $(A \bigcup B)-(A \bigcap B) = (A-B) \bigcup (B-A)$

iii) $A-(B-C) = (A-B) \bigcup (A \bigcap B \bigcap C)$

iv) $(A-B) \times C = (A \times C) - (B \times C)$

Question 5:

Let f be a non-empty set and for each $i \in I$, let X be a set. Prove that

(i) for any set B, we have : $B \bigcap \bigcup_{i \in I}X_{i} = \bigcup_{i \in I}(B \bigcap X_{i})$

(ii) if each $X_{i}$ is a subset of a given set S, then $(\bigcup_{i \in I}X_{i})^{'}=\bigcap_{i \in I}(X_{i})^{'}$

Question 6:

Prove that if $f: X \rightarrow Y$, $g: Y \rightarrow Z$, and $h: Z \rightarrow W$ are functions, then $h \circ (g \circ f) = (h \circ g) \circ f$

Question 7:

Let $f: X \rightarrow Y$ be a function, let A and B be subsets of X, and let C and D be subsets of Y. Prove that:

(i) $f(A \bigcup B) = f(A) \bigcup f(B)$

(ii) $f(A \bigcap B) \subset f(A) \bigcap f(B)$

(iii) $f^{-1}(C \bigcup D) = f^{-1}(C) \bigcup f^{-1}(D)$

(iv) $f^{-1}(C \bigcap D) = f^{-1}(C) \bigcap f^{-1}(D)$

(v) $f^{-1}(f(A)) \supset A$

(vi) $f(f^{-1}(C)) \subset C$

Question 8:

(a) Prove that a function f is one-to-one if and only if $f^{-1}(f(A)) = A$ for all $A \subset X$.

(b) Prove that a function f is onto if and only if $f(f^{-1}(C)) = C$ for all $C \subset Y$.

Cheers,

Nalin Pithwa

PS: These tutorial problems can be used for IIT JEE Maths, Pre RMO, RMO Maths etc. also.

This site uses Akismet to reduce spam. Learn how your comment data is processed.