**8. Real numbers. **We have confined ourselves so far to certain sections of the positive rational numbers, which we have agreed provisionally to call “positive real numbers.” Before we frame our final definitions, we must alter our point of view a little. We shall consider sections, or divisions into two classes, not merely of the positive rational numbers, but of all rational numbers, including zero. We may then repeat all that we have said about sections of the positive rational numbers in part 6 and 7 merely omitting the word positive occasionally.

**Definitions. A section of the rational numbers, in which both classes exist and the lower class has no greatest member, is called a real number, or simply a number.**

**A number which does not correspond to a rational number is called an irrational number.**

If the real number does correspond to a rational number, we shall use the term “rational” as applying to the real number line.

The term “rational number” will, as a result of our definitions, be ambiguous, it may mean the rational number of part 1, or the, corresponding real number. If we say that , we may be asserting either of the two different propositions, one a proposition of elementary arithmetic, the other a proposition concerning sections of the rational numbers. Ambiguities of this kind are common in mathematics, and are perfectly harmless, since the relations between different propositions are exactly the same whichever interpretation is attached to the propositions themselves. From and we can infer ; the inference is in no way affected by any doubt as to whether , and are arithmetic fractions or real numbers. Sometimes, of course, the context in which (example) ‘‘ occurs is sufficient to fix its interpretation. When we say (next blog part 9) that , *we must *mean by ‘‘ the real number .

The reader should observe, moreover, that no particular logical importance is to be attached to the precise form of definition of a ‘real number’ that we have adopted. We defined ‘a real number’ as being a section, that is, a pair of classes. We might equally well have defined it to being the lower, or the upper class; indeed it would be easy to define an infinity of classes of entities of each of which would possess the properties of the class of real numbers. What is essential in mathematics is that its symbols should be capable of* some* interpretation; generally they are capable of *many*, and then so far as mathematics is concerned, it does not matter which we adopt. Mr. Bertrand Russell has said that “mathematics is the science in which we do not know what we are talking about, and do not care what we say about it is true”, a remark which is expressed in the form of paradox but which in reality embodies a number of important truths. It would take too long to analyze the meaning of Mr Russell’s epigram in detail, but one at any rate of the implications is this, that the symbols of mathematics are capable of varying interpretations, and that we are in general at liberty to adopt whatever we prefer.

There are now three cases to distinguish. It may happen that all negative rational numbers belong to the lower class and zero and all positive rational numbers to the upper. We describe this section as the **real number zero. **Or, again it may happen that the lower class includes some positive numbers. Such a section we as a **positive real number. **Finally, it may happen that some negative numbers belong to the upper class. Such a section we describe as a **negative real number. **

Note: The difference between our presentation of a positive real number here and that or part 7 of the blogs amounts to the addition to the lower class of zero and all the negative rational numbers. An example of a negative real number is given by taking the property P of part 6 of the blogs to be and Q to be / This section plainly corresponds to the negative rational number . If we took P to be and Q to be , we should obtain a negative real number which is not rational.

More later,

Nalin Pithwa